๐Ÿ“… 24 July 2024
DOI: 10.51903/pixel.v17i1.2010

Emotion Detection Using Contextual Embeddings for Indonesian Product Review Texts on E-commerce Platform

JURNAL ILMIAH KOMPUTER GRAFIS
Universitas Sains dan Teknologi Komputer

๐Ÿ“„ Abstract

The advancement of e-commerce has changed the way people shop. However, there is a mismatch between the actual quality of a product and the sellerโ€™s description. Product reviews are an important source of information for making purchasing decisions. However, processing large numbers of reviews manually is difficult. This research aims to detect emotions in Indonesian language product review texts using contextual embeddings. The public dataset used was PRDECT-ID, which comprises five emotion labels. The methods used include data preprocessing, feature extraction using contextual embeddings such as Bidirectional Encoder Representations from Transformers (BERT), and classification using Decision Tree, Naรฏve Bayes, and k-Nearest Neighbors (KNN). Among the compared models, the KNN model demonstrated the highest improvement, achieving a 15.09% enhancement over the decision tree results. This research provides insights into the effectiveness of contextual embeddings in detecting emotions in Indonesian language product review texts.

๐Ÿ”– Keywords

#BERT; Contextual Embeddings; E-commerce Platform; Emotion Detection; Product Review Texts

โ„น๏ธ Informasi Publikasi

Tanggal Publikasi
24 July 2024
Volume / Nomor / Tahun
Volume 17, Nomor 1, Tahun 2024

๐Ÿ“ HOW TO CITE

Ariyanto, Amelia Devi Putri; Fari Katul Fikriah; Arif Fitra Setyawan, "Emotion Detection Using Contextual Embeddings for Indonesian Product Review Texts on E-commerce Platform," JURNAL ILMIAH KOMPUTER GRAFIS, vol. 17, no. 1, Jul. 2024.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

๐Ÿ“š References & Citations

Artikel ini telah dikutip oleh 1 publikasi lainnya.

๐Ÿ”— Artikel Terkait dari Jurnal yang Sama

๐Ÿ“Š Statistik Sitasi Jurnal