Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–2 dari 2 artikel
Analisis Sentimen Ulasan iPhone di Amazon Menggunakan Model Deep Learning BERT Berbasis Transformer
Arif Fitra Setyawan
; Arif Fitra Setyawan
; Amelia Devi Putri Ariyanto
; Fari Katul Fikriah
; Rozaq Isnaini Nugraha
Jurnal Elektronika dan Komputer
Vol 17
, No 2
(2024)
This study aims to analyze the sentiment of iPhone product reviews fromAmazon using the BERT (Bidirectional Encoder Representations from Transformers) model to classify reviews as either positive or negative. The dataset, sourced from Kaggle, includes text reviews and star ratings, where high ratings indicate positive sentiment and low ratings indicate negative sentiment. After text preprocessing steps, including data cleaning, tokenization, and sentiment labeling, the BERT model was fine-tuned...
Sumber Asli
Google Scholar
DOI
Emotion Detection Using Contextual Embeddings for Indonesian Product Review Texts on E-commerce Platform
Ariyanto, Amelia Devi Putri
; Fari Katul Fikriah
; Arif Fitra Setyawan
JURNAL ILMIAH KOMPUTER GRAFIS
Vol 17
, No 1
(2024)
The advancement of e-commerce has changed the way people shop. However, there is a mismatch between the actual quality of a product and the seller’s description. Product reviews are an important source of information for making purchasing decisions. However, processing large numbers of reviews manually is difficult. This research aims to detect emotions in Indonesian language product review texts using contextual embeddings. The public dataset used was PRDECT-ID, which comprises five emotion lab...
Sumber Asli
Google Scholar
DOI
1 Sitasi