📅 24 July 2024
DOI: 10.51903/pixel.v17i1.2006

The Implementation of a Logistic Regression Algorithm and Gradient Boosting Classifier for Predicting Telco Customer Churn

JURNAL ILMIAH KOMPUTER GRAFIS
Universitas Sains dan Teknologi Komputer

📄 Abstract

This research aims to predict customer churn in a telecommunications company using Logistic Regression (LR) and Gradient Boosting Classifier (GBC) algorithms. Customer churn poses a significant challenge as acquiring new customers is costlier than retaining existing ones. The dataset from Kaggle comprises 7043 records and 21 attributes. The process includes data pre-processing, cleaning, transformation, and normalization using a Min-Max Scaler. The data is split into features (X) and target (y), then divided into training and testing sets with an 80:20 ratio. Both models were trained and evaluated using a confusion matrix. Results show that the GBC model outperforms the LR model, with an accuracy of 83% compared to LR's 81%. This study demonstrates the effectiveness of GBC in predicting customer churn.

🔖 Keywords

#Customer Churn; Logistic Regression; Gradient Boosting Classifier

â„šī¸ Informasi Publikasi

Tanggal Publikasi
24 July 2024
Volume / Nomor / Tahun
Volume 17, Nomor 1, Tahun 2024

📝 HOW TO CITE

Angga Adiansya; Zaenal Abidin, "The Implementation of a Logistic Regression Algorithm and Gradient Boosting Classifier for Predicting Telco Customer Churn," JURNAL ILMIAH KOMPUTER GRAFIS, vol. 17, no. 1, Jul. 2024.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

📚 References & Citations

Artikel ini telah dikutip oleh 1 publikasi lainnya.

🔗 Artikel Terkait dari Jurnal yang Sama

📊 Statistik Sitasi Jurnal