Resolving Data Imbalance Using a Bi-Directional Long-Short Term Memory for Enhanced Diabetes Mellitus Detection
(Andrew Okonji Eboka, Christopher Chukwufunaya Odiakaose, Joy Agboi, Margaret Dumebi Okpor, Paul Avweresuoghene Onoma, Tabitha Chukwudi Aghaunor, Arnold Adimabua Ojugo, Eferhire Valentine Ugbotu, Asuobite ThankGod Max-Egba, Victor Ochuko Geteloma, Amaka Patience Binitie, Christopher Chukwudi Onochie, Rita Erhovwo Ako)
DOI : 10.62411/faith.3048-3719-73
- Volume: 2,
Issue: 1,
Sitasi : 0 08-May-2025
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
Diabetes is the body’s inability to efficiently break down sugar or secrete enough insulin required to process glucose, which supports normal bodily functions. Diabetes, as a prevalent chronic disorder, has contributed to numerous underlying health challenges among its carriers and is classified by the WHO as the world’s deadliest disease and silent killer. Its non-communicable nature makes early diagnosis difficult, allowing progression through various stages: type I, type II, pre-diabetes, and gestational. This challenge is further compounded by the imbalanced nature of diabetes datasets, which leads to high misclassification, poor generalization, and reduced accuracy. This study predicts diabetes using a bi-directional long short-term memory (BiLSTM) model applied to two datasets: (a) PIMA Indian Diabetes and (b) Iraqi Society Dataset, to evaluate the impact of six known balancing techniques and assess their effectiveness. Results show that for PID, the SMOTE-Tomek fused BiLSTM outperforms other balancing schemes with F1, Accuracy, Precision, Recall, and Specificity scores of 0.9182, 0.9198, 0.9128, 0.9248, and 0.9208, respectively. For ISD, it also achieves the best performance with values of 0.9367, 0.9369, 0.9386, 0.9388, and 0.9313, respectively. Other balancing approaches yielded F1 scores ranging from [0.6751 to 0.9347], accuracy [0.684 to 0.9358], Precision [0.6851 to 0.9296], Recall [0.6639 to 0.9356], and specificity [0.6658 to 0.9298]. These results imply that BiLSTM is resilient to the vanishing gradient problem and can effectively classify diabetes cases with enhanced performance.
|
0 |
2025 |
Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner
(Christopher Chukwufunaya Odiakaose, Fidelis Obukohwo Aghware, Margaret Dumebi Okpor, Andrew Okonji Eboka, Amaka Patience Binitie, Arnold Adimabua Ojugo, De Rosal Ignatius Moses Setiadi, Ayei Egu Ibor, Rita Erhovwo Ako, Victor Ochuko Geteloma, Eferhire Valentine Ugbotu, Tabitha Chukwudi Aghaunor)
DOI : 10.62411/faith.3048-3719-43
- Volume: 1,
Issue: 3,
Sitasi : 0 01-Dec-2024
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
High blood pressure (or hypertension) is a causative disorder to a plethora of other ailments – as it succinctly masks other ailments, making them difficult to diagnose and manage with a targeted treatment plan effectively. While some patients living with elevated high blood pressure can effectively manage their condition via adjusted lifestyle and monitoring with follow-up treatments, Others in self-denial leads to unreported instances, mishandled cases, and in now rampant cases – result in death. Even with the usage of machine learning schemes in medicine, two (2) significant issues abound, namely: (a) utilization of dataset in the construction of the model, which often yields non-perfect scores, and (b) the exploration of complex deep learning models have yielded improved accuracy, which often requires large dataset. To curb these issues, our study explores the tree-based stacking ensemble with Decision tree, Adaptive Boosting, and Random Forest (base learners) while we explore the XGBoost as a meta-learner. With the Kaggle dataset as retrieved, our stacking ensemble yields a prediction accuracy of 1.00 and an F1-score of 1.00 that effectively correctly classified all instances of the test dataset.
|
0 |
2024 |
Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble
(Margaret Dumebi Okpor, Fidelis Obukohwo Aghware, Maureen Ifeanyi Akazue, Andrew Okonji Eboka, Rita Erhovwo Ako, Arnold Adimabua Ojugo, Christopher Chukwufunaya Odiakaose, Amaka Patience Binitie, Victor Ochuko Geteloma, Patrick Ogholuwarami Ejeh)
DOI : 10.62411/faith.2024-14
- Volume: 1,
Issue: 2,
Sitasi : 0 07-Sep-2024
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
The digital revolution frontiers have rippled across society today – with various web content shared online for users as they seek to promote monetization and asset exchange, with clients constantly seeking improved alternatives at lowered costs to meet their value demands. From item upgrades to their replacement, businesses are poised with retention strategies to help curb the challenge of customer attrition. The birth of smartphones has proliferated feats such as mobility, ease of accessibility, and portability – which, in turn, have continued to ease their rise in adoption, exposing user device vulnerability as they are quite susceptible to phishing. With users classified as more susceptible than others due to online presence and personality traits, studies have sought to reveal lures/cues as exploited by adversaries to enhance phishing success and classify web content as genuine and malicious. Our study explores the tree-based Random Forest to effectively identify phishing cues via sentiment analysis on phishing website datasets as scrapped from user accounts on social network sites. The dataset is scrapped via Python Google Scrapper and divided into train/test subsets to effectively classify contents as genuine or malicious with data balancing and feature selection techniques. With Random Forest as the machine learning of choice, the result shows the ensemble yields a prediction accuracy of 97 percent with an F1-score of 98.19% that effectively correctly classified 2089 instances with 85 incorrectly classified instances for the test-dataset.
|
0 |
2024 |
BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange
(James Kolapo Oladele, Arnold Adimabua Ojugo, Christopher Chukwufunaya Odiakaose, Frances Uchechukwu Emordi, Reuben Akporube Abere, Blessing Nwozor, Patrick Ogholuwarami Ejeh, Victor Ochuko Geteloma)
DOI : 10.62411/jcta.9509
- Volume: 1,
Issue: 3,
Sitasi : 0 06-Jan-2024
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
Blockchain platforms propagate into every facet, including managing medical services with professional and patient-centered applications. With its sensitive nature, record privacy has become imminent with medical services for patient diagnosis and treatments. The nature of medical records has continued to necessitate their availability, reachability, accessibility, security, mobility, and confidentiality. Challenges to these include authorized transfer of patient records on referral, security across platforms, content diversity, platform interoperability, etc. These, are today – demystified with blockchain-based apps, which proffers platform/application services to achieve data features associated with the nature of the records. We use a permissioned-blockchain for healthcare record management. Our choice of permission mode with a hyper-fabric ledger that uses a world-state on a peer-to-peer chain – is that its smart contracts do not require a complex algorithm to yield controlled transparency for users. Its actors include patients, practitioners, and health-related officers as users to create, retrieve, and store patient medical records and aid interoperability. With a population of 500, the system yields a transaction (query and https) response time of 0.56 seconds and 0.42 seconds, respectively. To cater to platform scalability and accessibility, the system yielded 0.78 seconds and 063 seconds, respectively, for 2500 users.
|
0 |
2024 |
CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique
(Arnold Adimabua Ojugo, Patrick Ogholuwarami Ejeh, Maureen Ifeanyi Akazue, Nwanze Chukwudi Ashioba, Christopher Chukwufunaya Odiakaose, Rita Erhovwo Ako, Blessing Nwozor, Frances Uche Emordi)
DOI : 10.33633/jcta.v1i2.9355
- Volume: 1,
Issue: 2,
Sitasi : 0 06-Dec-2023
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
Besides the inherent benefits of exchanging information and interactions between nodes on a social graph, they can also become a means for the propagation of knowledge. Social graphs have also become a veritable structure for the spread of disease outbreaks. These and its set of protocols are deployed as measures to curb its widespread effects as it has also left network experts puzzled. The recent lessons from the COVID-19 pandemic continue to reiterate that diseases will always be around. Nodal exposure, adoption/diffusion of disease(s) among interacting nodes vis-a-vis migration of nodes that cause further spread of contagion (concerning COVID-19 and other epidemics) has continued to leave experts bewildered towards rejigging set protocols. We model COVID-19 as a Markovian process with node targeting, propagation and recovery using migration-interaction as a threshold feat on a social graph. The migration-interaction design seeks to provision the graph with minimization and block of targeted diffusion of the contagion using seedset(s) nodes with a susceptible-infect policy. The study results showed that migration and interaction of nodes via the mobility approach have become an imperative factor that must be added when modeling the propagation of contagion or epidemics.
|
0 |
2023 |
Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study
(Arnold Adimabua Ojugo, Maureen Ifeanyi Akazue, Patrick Ogholuwarami Ejeh, Nwanze Chukwudi Ashioba, Christopher Chukwufunaya Odiakaose, Rita Erhovwo Ako, Frances Uche Emordi)
DOI : 10.33633/jcta.v1i2.9259
- Volume: 1,
Issue: 2,
Sitasi : 0 12-Oct-2023
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
The advent of the Internet as an effective means for resource sharing has consequently, led to proliferation of adversaries, with unauthorized access to network resources. Adversaries achieved fraudulent activities via carefully crafted attacks of large magnitude targeted at personal gains and rewards. With the cost of over $1.3Trillion lost globally to financial crimes and the rise in such fraudulent activities vis the use of credit-cards, financial institutions and major stakeholders must begin to explore and exploit better and improved means to secure client data and funds. Banks and financial services must harness the creative mode rendered by machine learning schemes to help effectively manage such fraud attacks and threats. We propose HyGAMoNNE – a hybrid modular genetic algorithm trained neural network ensemble to detect fraud activities. The hybrid, equipped with knowledge to altruistically detect fraud on credit card transactions. Results show that the hybrid effectively differentiates, the benign class attacks/threats from genuine credit card transaction(s) with model accuracy of 92%.
|
0 |
2023 |