6285641688335, 628551515511 info@scirepid.com

 
J. Fut. Artif. Intell. Tech. - Journal of Future Artificial Intelligence and Technologies - Vol. 1 Issue. 3 (2024)




Abstract

High blood pressure (or hypertension) is a causative disorder to a plethora of other ailments – as it succinctly masks other ailments, making them difficult to diagnose and manage with a targeted treatment plan effectively. While some patients living with elevated high blood pressure can effectively manage their condition via adjusted lifestyle and monitoring with follow-up treatments, Others in self-denial leads to unreported instances, mishandled cases, and in now rampant cases – result in death. Even with the usage of machine learning schemes in medicine, two (2) significant issues abound, namely: (a) utilization of dataset in the construction of the model, which often yields non-perfect scores, and (b) the exploration of complex deep learning models have yielded improved accuracy, which often requires large dataset. To curb these issues, our study explores the tree-based stacking ensemble with Decision tree, Adaptive Boosting, and Random Forest (base learners) while we explore the XGBoost as a meta-learner. With the Kaggle dataset as retrieved, our stacking ensemble yields a prediction accuracy of 1.00 and an F1-score of 1.00 that effectively correctly classified all instances of the test dataset.







DOI :


Sitasi :

0

PISSN :

EISSN :

3048-3719

Date.Create Crossref:

01-Dec-2024

Date.Issue :

01-Dec-2024

Date.Publish :

01-Dec-2024

Date.PublishOnline :

01-Dec-2024



PDF File :

Resource :

Open

License :

https://creativecommons.org/licenses/by-sa/4.0