+62 813-8532-9115 info@scirepid.com

 
J. Comput. Theor. Appl. - Journal of Computing Theories and Applications - Vol. 3 Issue. 3 (2026)

Android Malware Detection Using Machine Learning with SMOTE-Tomek Data Balancing

Maryam Sufiyanu Masari, Maiauduga Abdullahi Danladi, Ilori Loretta Onyinye, Loreta Katok Tohomdet,



Abstract

This study presents a comparative analysis of machine learning algorithms for Android malware detection using the TUANDROMD dataset. SMOTE was applied to address class imbalance and ensure robust model evaluation. Experimental results show that Random Forest achieved the best performance with near-perfect accuracy and ROC AUC, confirming its robustness for malware detection tasks.







DOI :


Sitasi :

20

PISSN :

EISSN :

3024-9104

Date.Create Crossref:

18-Jan-2026

Date.Issue :

18-Jan-2026

Date.Publish :

18-Jan-2026

Date.PublishOnline :

18-Jan-2026



PDF File :

Resource :

Open

License :

https://creativecommons.org/licenses/by/4.0