The Internet of Things (IoT) phenomenon is centered around linking various devices and objects to the Internet, enabling them to communicate, collect, and exchange data [1]. The IoT needs strong, lightweight, and secure authorization schemes to regulate many devices with varying levels of ability. Quantum-resilient federated Multi-Factor Authentication (QRF-MFA) is a solution presented in this paper to address the above-discussed issues. Featuring quantum-resistant cryptographic protocols, high-speed and low-energy Physically Unclonable Functions (PUFs), decentralized identity management, and optimized communication protocols, QRF-MFA provides a complete solution for secure cross-domain device identification and authentication. This is done by leveraging blockchain technology for immutable and transparent management of identities yet limiting on-chain storage overhead. It also provides secure, lightweight communication well-suited for resource constrained IIoT devices, and it is designed for fog and edge computing environments as well. QRF-MFA eliminates the challenges of current methods by combining security, efficiency, and scalability and delivering a resilient and future-ready solution to secure IIoT authentication.