6285641688335, 628551515511 info@scirepid.com

 
Merkurius - Merkurius Jurnal Riset Sistem Informasi dan Teknik Informatika - Vol. 2 Issue. 6 (2024)

Implementasi Data Mining untuk Analisis Data Penjualan dengan Menggunakan Algoritma Naïve Bayes

Lifa Sholiah, Ito Setiawan, Abdillah Teguh Permana, Iqbal Yusuf Azhari, Wakhid Sayudha Rendra Graha Alrashid,



Abstract

KPRI KOKARNABA Baturraden faces challenges in managing increasingly complex sales data, particularly in identifying the most in-demand products to maximize profit. This study aims to analyze sales patterns using the Naïve Bayes algorithm as a probability-based classification method. The collected sales data were analyzed to identify categories of best-selling and less popular products within the cooperative. The results indicate that the Naïve Bayes algorithm has an accuracy rate of 77.56% in predicting product categories. This research is expected to assist the cooperative in optimizing stock management and improving member satisfaction.







DOI :


Sitasi :

0

PISSN :

3031-8904

EISSN :

3031-8912

Date.Create Crossref:

13-Nov-2024

Date.Issue :

12-Nov-2024

Date.Publish :

12-Nov-2024

Date.PublishOnline :

12-Nov-2024



PDF File :

Resource :

Open

License :

https://creativecommons.org/licenses/by-sa/4.0