Prediksi dengan model sistem pendukung keputusan merupakan cara yang tepat sasaran untuk digunakan dalam memecahkan masalah. Demam Berdarah Dengue (DBD) adalah penyakit endemik di Indonesia yang memerlukan penanganan cepat untuk mencegah komplikasi lebih lanjut. Prediksi diagnosis DBD dengan menggunakan algoritma Decision Tree C4.5 memiliki tingkat akurasi 100% dan meyakinkan. Dataset yang digunakan mencakup data medis pasien, seperti gejala klinis yaitu demam, nyeri sendi, mual, hasil laboratorium berupa trombosit, hematokrit, uji NS1, serta riwayat komorbiditas dan durasi gejala. Proses pre-processing dilakukan untuk memastikan data siap digunakan, dengan menangani data yang hilang dan menyesuaikan format data agar konsisten. Model Decision Tree C4.5 dipilih karena kemampuannya mengolah data dengan berbagai format dan hasilnya dapat dengan mudah dipahami. Model C4.5 dievaluasi menggunakan metrik akurasi, presisi, sensitivitas, dan spesifisitas. Dengan performa yang baik, model ini memiliki potensi untuk digunakan dalam sistem pendukung keputusan medis. Implementasinya di lapangan dapat membantu tenaga medis dalam mempercepat diagnosis dan memberikan penanganan yang lebih tepat waktu, yang sangat penting dalam menangani pasien DBD.