6285641688335, 628551515511 info@scirepid.com

 
tc - Techno.Com - Vol. 24 Issue. 1 (2025)

Penerapan Algoritma Linear Regression dan Support Vector Regression dalam Prediksi Temperatur Udara di Malang

Karnisih Karnisih, Sunarno Sunarno, Iqbal Iqbal, Djuniadi Djuniadi, Feddy Setio Pribadi,



Abstract

Perubahan iklim global dan peningkatan variabilitas cuaca membuat prediksi temperatur udara menjadi salah satu kebutuhan penting di berbagai sektor. Temperatur udara merupakan parameter penting dalam meteorologi yang mempengaruhi berbagai aspek kehidupan manusia. Predisi temperatur udara saat ini banyak memanfaatkan algoritma machine learning, namum nilai akurasi masih belum optimal. Tujuan dari penelitian ini untuk meningkatkan akurasi prediksi temperatur udara rata-rata dengan menggunakan pendekatan berbasis machine learning. Metode dalam penelitian ini menggunakan algoritma Linear Regression dan Support Vector Regression (linier dan gaussian non linear) karena memiliki akurasi prediksi data yang cukup baik di berbagai bidang termasuk bidang hidrologi. Penelitian ini menggunakan data dari Badan Meteorologi Klimatologi dan Geofisika (BMKG) lokasi Stasiun Klimatologi Jawa Timur periode data tahun 2019-2023 dengan parameter cuaca temperatur rata-rata (TAV), kelembaban udara (HAV), kecepatan angin (WAV), curah hujan (RR), tekanan udara (PPP), Penyinaran matahari (SUN) dan titik embun (DEW_POINT). Kinerja model dievaluasi menggunakan pengukuran metrik MSE, RMSE, MAE, MAPE dan R². Hasil pengukuran kinerja model algoritma Gaussian support vector Regression (non linier SVR) lebih baik dibanding dengan linear support vector Regression (linear SVR) dan  algoritma linear regression dengan nilai yang lebih tinggi R² sebesar  0,9891 ± 0,0011 dan nilai error yang lebih rendah pada semua metrik pengukuran.
Kata kunci: Prediksi temperatur udara, machine learning, Linear Regression,  Suport Vektor Regression







Publisher :

IntSys Research

DOI :


Sitasi :

0

PISSN :

1412-2693

EISSN :

2356-2579

Date.Create Crossref:

28-Feb-2025

Date.Issue :

26-Feb-2025

Date.Publish :

26-Feb-2025

Date.PublishOnline :

26-Feb-2025



PDF File :

Resource :

Open

License :

https://creativecommons.org/licenses/by-nc/4.0