In many wireless sensor network (WSN) applications, nodes are randomly deployed and self-organize into a wireless network to perform tasks. In practice, recharging the batteries of network nodes after deployment is often difficult. Network nodes often operate autonomously, so the main focus is on increasing the node lifetime. Data redundancy is another limitation that makes nodes inefficient. In most cases, densely deployed nodes in a monitoring area will have redundant data from neighboring nodes. Therefore, we propose a clustering technique to select the Cluster Head (CH) node in small-scale WSNs. Since transmission consumes more energy than data collection, this protocol enables reactive routing, where transmission occurs only when a certain threshold is reached. In addition, based on their heterogeneous energy levels, nodes can be grouped into three categories: Normal, Intermediate, and Advanced. Simulation results in MATLAB/Simulink show that, after approximately 3000 rounds, the proposed method successfully transmitted about 3.1 × 104 packets to the base station, compared to 2.3 × 104 packets for the Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. In addition, the time when the last node died was approximately 3,500 rounds, whereas the LEACH protocol only maintained about 1,500 rounds. The results have shown the effectiveness of this technique in reducing the dead node rate and increasing packet transmission efficiency.