Abstract
The purpose of this research is to propose the use of machine learning techniques to establish hybrid models for detecting hoaxes. The research methodology used here is a feature extraction experiment, in which a series of features will be analyzed and grouped in an experiment to detect hoax news and hoax, especially in the political sphere by considering five modalities.
The outcome of this research indicates that the relation between publisher Prejudice and the attitude of hyper-biased news sources makes them more possible than other sources to spread illusive articles, besides that the correlation between political Prejudice and news credibility is also very strong. This shows that the experiment using a hybrid model to detect hoaxes works. well. To achieve even better results in future research, it is highly recommended to analyze user-based features in terms of attitudes, topics, or credibility.