Pelatihan Pembuatan dan Pengelolaan Website Madrasah bagi Guru MA Miftahul Ulum Demak
(Nur Rokhman, Agus Setiawan, Deddy Award Widya Laksana, Cahaya Jatmoko, Ahmad Akrom)
DOI : 10.62411/ja.v8i2.2936
- Volume: 8,
Issue: 2,
Sitasi : 0 28-May-2025
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
Saat ini di era digitalisasi serba online sangat urgent sekali untuk mendapatkan pelatihan dan pendampingan dalam pemanfataan teknologi dalam menciptakan website madrasah yang dapat dimanfaatkan untuk berbagi informasi seperti profil madrasah, kegiatan madrasah serta kegiatan belajar mengajar. Dengan adanya website madrasah ini setidaknya menjadi kontribusi Universitas Dian Nuswantoro kepada madrasah ini yang sudah berjalan hampir 16 tahun lamanya namun belum mempunyai website madrasah yang dikelola dengan baik. Tujuan dari kegiatan pengabdian ini guru dapat terciptanya website madrasah yang sudah siap online, yang dapat dimanfaatkan untuk berbagi informasi kepada masyarakat, baik informasi profil madrasah maupun sebagai media pembelajaran kepada siswa dan masyarakat. Kegiatan pelatihan dan pendampingan ini diharapkan dapat menjadi sumbangsih perguruan tinggi Universitas Dian Nuswantoro kepada generasi muda terutama melalui MA Miftahul Ulum Demak, sehingga kepercayaan masyarakat semakin meningkat.
|
0 |
2025 |
Completing Sudoku Games Using the Depth First Search Algorithm
(Fauzan Maulana Alfany, Christy Atika Sari, Cahaya Jatmoko, Deddy Award Widya Laksana, Candra Irawan, Solichul Huda)
DOI : 10.62411/jais.v9i1.10017
- Volume: 9,
Issue: 1,
Sitasi : 0 21-Apr-2025
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
Sudoku is a digital game that is included in the type of logic-based puzzle game where the goal is to fill in the puzzle with random numbers. Therefore, in this research it is proposed to use Artificial Intelligence which contains the Depth First Search Algorithm to track the number of possible solutions that lead to only one so that it becomes efficient. This game has different levels of difficulty such as easy, medium and difficult. The time and complexity of execution will vary depending on the difficulty so it is proposed to use Android Studio software. The experimental results prove that there is an increase in playing the Sudoku game quickly and accurately by applying the Depth First Search Algorithm method. This is proven by the ability to complete this game using the Depth First Search Algorithm using the Android Studio programming language. The average time at the easy level is 11:04 minutes, at the normal level is 10:52 minutes, at the hard level is 25:46 minutes, and at the extreme level is 38 minutes.
|
0 |
2025 |
Pelatihan Diklat Pemanfaatan Aplikasi Online Menggunakan Cek Plagiarisme Dengan Turnitin Untuk Guru Dan Dosen Pada Perkumpulan Profesi Multimedia Dan Teknologi Informasi (PPMULTINDO)
(Sindhu Rakasiwi, Aris Marjuni, Nova Rijati, Heribertus Himawan, Cahaya Jatmoko, Daurat Sinaga)
DOI : 10.51903/community.v4i2.534
- Volume: 4,
Issue: 2,
Sitasi : 0 31-Jul-2024
| Abstrak
| PDF File
| Resource
| Last.23-Jul-2025
Abstrak:
Conveying appropriate information to be understood quickly and accurately is very important in various areas of life, both academic and non-academic. A teacher or lecturer is a teacher whose job is to educate and provide instruction to students or students. Data visualization is one way that can be used to present data. The advantage of this method is the availability of statistical graphics which can enrich the display of information so that the results are more interactive for the audience. Google Data Studio is an application launched by Google that can be used to convert raw data into interesting and strategic information for users. That way, the information becomes more appropriate to understand quickly and accurately.
|
0 |
2024 |
|
0 |
2024 |
Multi-Layer Convolutional Neural Networks for Batik Image Classification
(Daurat Sinaga, Cahaya Jatmoko, Suprayogi Suprayogi, Novi Hedriyanto)
DOI : 10.15294/sji.v11i2.3309
- Volume: 11,
Issue: 2,
Sitasi : 0 31-May-2024
| Abstrak
| PDF File
| Resource
| Last.10-Jul-2025
Abstrak:
Purpose: The purpose of this study is to enhance the classification of batik motifs through the implementation of a novel approach utilizing Multi-Layer Convolutional Neural Networks (CNN). Batik, a traditional Indonesian textile art form, boasts intricate motifs reflecting rich cultural heritage. However, the diverse designs often pose challenges in accurate classification. Leveraging advancements in deep learning, this research proposes a methodological framework employing Multi-Layer CNN to improve classification accuracy.
Methods: The methodology integrates Multi-Layer CNN architecture with an image dataset comprising various batik motifs, meticulously collected and preprocessed for uniformity. The CNN architecture incorporates convolutional layers of different sizes (3x3, 5x5, and 7x7) to extract unique features from batik images. Training options, including the Adam optimizer and validation frequency, are optimized based on parameters to enhance model efficiency and effectiveness.
Result: Results from the experimentation demonstrate significant improvements in classification accuracy, with an overall accuracy rate of 90.88%. Notably, precision and recall scores for individual batik motifs, such as Motif Cual Bangka and Motif Rumah Adat Belitung, reached remarkable levels, showcasing the efficacy of the proposed approach.
Novelty: This study contributes novelty through the integration of Multi-Layer CNN in batik classification, offering a robust and efficient method for identifying intricate batik motifs. Additionally, the research presents a pioneering application of deep learning techniques in preserving and promoting traditional cultural heritage, thereby bridging the gap between tradition and modern technology.
|
0 |
2024 |
Prediction of Sleep Disorders Based on Occupation and Lifestyle: Performance Comparison of Decision Tree, Random Forest, and Naïve Bayes Classifier
(Heru Lestiawan, Cahaya Jatmoko, Feri Agustina, Daurat Sinaga, Lalang Erawan)
DOI : 10.33633/jais.v8i3.8987
- Volume: 8,
Issue: 3,
Sitasi : 0 30-Nov-2023
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
Health is a very important thing in life. Therefore, to maintain health, we need adequate rest. Without adequate rest, the body will not be healthy and fit. In this study, a person's sleep disorder prediction will be made based on their lifestyle and work. The predictions made will classify sleep disorders that are absent, sleep apnea and insomnia from certain lifestyles and work. The methods used to make predictions are decision tree classifier, random forest classifier and naïve Bayes classifier. The test was carried out using a total of 375 data which was broken down into 70% training data and 30% testing data. The results obtained after testing with test data are by using the decision tree classifier algorithm to get an accuracy of 89.431%, using the random forest classifier algorithm to get an accuracy of 90.244% and by using the naïve Bayes classifier algorithm to get an accuracy of 86.992%.
|
0 |
2023 |
Learning Vector Quantization for Robusta and Arabica Coffee Classification
(Cahaya Jatmoko, Daurat Sinaga, Heru Lestiawan, Heru Pramono Hadi)
DOI : 10.33633/jais.v8i2.7343
- Volume: 8,
Issue: 2,
Sitasi : 0 31-Jul-2023
| Abstrak
| PDF File
| Resource
| Last.31-Jul-2025
Abstrak:
ANN or artificial neural network is a way to solve various kinds of problems to make decisions based on training. One of the methods of JSt which contains competitive and supervised learning. Where this layer will automatically learn the classification of the closest input distances and will be distributed to the same class. there are 2 types of coffee beans that are famous in the world, namely arabica and robusta, for some people or the layman it will be very difficult to distinguish these 2 types of coffee beans apart from the fact that the shape is almost the same the color looks almost the same but there are a number of differences in the two coffee beans which we can see from the shape of the seed. Robusta has a shape that tends to be round and smaller in size, and has a rougher texture. Arabica, on the other hand, is slightly flatter and longer in shape. The size is slightly bigger than Robusta but the texture of Arabica is smoother than Robusta. This is the basis of this study where the images of the two coffee beans will be extracted using the first-order texture feature extraction method based on MU parameters, standard deviation, skewness, energy, entropy, and smoothness. The method for collecting data was in the form of a quantitative method using images from each coffee bean, both Arabica and Robusta, with a total of 130 images. The comparison between training_data and test_data is 80:20. Through research conducted in the form of performance parameters with the best accuracy, including: Learning rate 0.01, max epoch or maximum iteration of 10 and 30%, the amount of training data used is 39 training images and 26 test images resulting in an accuracy presentation of 71% for the training process and error with a percentage of 96% for the test process.
|
0 |
2023 |
Metode K-Nearest Neighbor dan Ekstraksi Fitur GLCM untuk Mengklasifikasikan Biji Kopi Robusta dan Arabika Lokal
(Cahaya Jatmoko, Daurat Sinaga)
DOI : 10.51903/semnastekmu.v2i1.189
- Volume: 2,
Issue: 2,
Sitasi : 0 25-Jan-2023
| Abstrak
| PDF File
| Resource
| Last.23-Jul-2025
Abstrak:
Beberapa produk kopi yang cukup terkenal adalah Kopi Robusta dan Kopi Arabika. Memanfaatkan teknologi untuk membantu mengidentifikasi bagaimana perbedaan penampilan biji kopi menjadi salah satu isu yang perlu di uji coba, bahkan, pengidentifikasian menggunakan data citra juga dapat dilakukan dengan optimal. Proses pengidentifikasian tersebut dilakukan dengan cara memanfaatkan teknik pengolahan citra digital. Pada penelitian ini, telah digunakan Algoritma K-Nearest Neighbor (K-NN) dan Ekstraksi Fitur Gray Level Co-occurrence Matrix (GLCM) untuk melakukan proses pengklasifikasian biji kopi Robusta dan Arabika. Digunakan dataset gambar sebanyak 194 gambar biji kopi yang merupakan gabungan dari 97 data citra dari biji kopi Robusta, dan 97 data citra dari biji kopi Arabika. Dari keseluruhan dataset tersebut, digunakan sebanyak 174 data sebagai data latih, dan 20 data sisanya sebagai data uji. Akurasi tertinggi yang dihasilkan dari eksperimen ini sebesar 95% dengan ketentuan jarak piksel = 1, nilai K = 1, dan besar sudur = 45o.
|
0 |
2023 |