- Volume: 2,
Issue: 1,
Sitasi : 0
Abstrak:
Sleep disorders, including insomnia, can be influenced by various lifestyle factors, such as sleep duration, sleep quality, physical activity, and individual health conditions. This study aims to categorize the risk level of insomnia based on lifestyle using the K-Means clustering algorithm. The data used include sleep duration, sleep quality, heart rate, and daily step count. Through the implementation of the K-Means algorithm, the data is analyzed to group individuals into several categories based on existing lifestyle patterns. The results of the study show a correlation between a healthy lifestyle and better sleep quality. In addition, the resulting clusters provide insight into lifestyle characteristics that affect the risk of insomnia, so that they can be the basis for recommendations for more targeted health interventions. This study is expected to contribute to the development of data-based sleep disorder management strategies by utilizing machine learning methods, especially the K-Means algorithm, to support efforts to improve the quality of life of the community.