Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–2 dari 2 artikel
Investigating a SMOTE-Tomek Boosted Stacked Learning Scheme for Phishing Website Detection: A Pilot Study
Ugbotu, Eferhire Valentine
; Emordi, Frances Uchechukwu
; Ugboh, Emeke
; Anazia, Kizito Eluemunor
; Odiakaose, Christopher Chukwufunaya
; Onoma, Paul Avwerosuoghene
; Idama, Rebecca Okeoghene
; Ojugo, Arnold Adimabua
; Geteloma, Victor Ochuko
; Oweimieotu, Amanda Enaodona
; Aghaunor, Tabitha Chukwudi
; Binitie, Amaka Patience
; Odoh, Anne
; Onochie, Chris Chukwudi
; Ezzeh, Peace Oguguo
; Eboka, Andrew Okonji
; Agboi, Joy
; Ejeh, Patrick Ogholuwarami
Journal of Computing Theories and Applications
Vol 3
, No 2
(2025)
The daily exchange of informatics over the Internet has both eased the widespread proliferation of resources to ease accessibility, availability and interoperability of accompanying devices. In addition, the recent widespread proliferation of smartphones alongside other computing devices has continued to advance features such as miniaturization, portability, data access ease, mobility, and other merits. It has also birthed adversarial attacks targeted at network infrastructures and aimed at expl...
Sumber Asli
Google Scholar
DOI
Integrating Hybrid Statistical and Unsupervised LSTM-Guided Feature Extraction for Breast Cancer Detection
Setiadi, De Rosal Ignatius Moses
; Ojugo, Arnold Adimabua
; Pribadi, Octara
; Kartikadarma , Etika
; Setyoko, Bimo Haryo
; Widiono, Suyud
; Robet, Robet
; Aghaunor, Tabitha Chukwudi
; Ugbotu, Eferhire Valentine
Journal of Computing Theories and Applications
Vol 2
, No 4
(2025)
Breast cancer is the most prevalent cancer among women worldwide, requiring early and accurate diagnosis to reduce mortality. This study proposes a hybrid classification pipeline that integrates Hybrid Statistical Feature Selection (HSFS) with unsupervised LSTM-guided feature extraction for breast cancer detection using the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Initially, 20 features were selected using HSFS based on Mutual Information, Chi-square, and Pearson Correlation. To addres...
Sumber Asli
Google Scholar
DOI