Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–2 dari 2 artikel
A Cubical Persistent Homology-Based Technique for Image Denoising with Topological Feature Preservation
Al-Imran, Md.
; Liza, Mst Zinia Afroz
; Shiraj, Md. Morshed Bin
; Murshed, Md. Masum
; Akhter, Nasima
Journal of Computing Theories and Applications
Vol 2
, No 2
(2024)
Image denoising is a fundamental challenge in image processing, where the objective is to remove noise while preserving critical image features. Traditional denoising methods, such as Wavelet, Total Variation (TV) minimization, and Non-Local Means (NLM), often struggle to maintain the topological integrity of image features, leading to the loss of essential structures. This study proposes a Cubical Persistent Homology-Based Technique (CPHBT) that leverages persistence barcodes to identify signif...
Sumber Asli
Google Scholar
DOI
An Intelligent Telediagnosis of Acute Lymphoblastic Leukemia using Histopathological Deep Learning
Khan Tusar, Md. Taufiqul Haque
; Islam, Md. Touhidul
; Sakil, Abul Hasnat
; Khandaker, M N Huda Nahid
; Hossain, Md. Monir
Journal of Computing Theories and Applications
Vol 2
, No 1
(2024)
Leukemia, a global health challenge characterized by malignant blood cell proliferation, demands innovative diagnostic techniques due to its increasing incidence. Among leukemia types, Acute Lymphoblastic Leukemia (ALL) emerges as a particularly aggressive form affecting diverse age groups. This study proposes an advanced mechanized system utilizing Deep Neural Networks for detecting ALL blast cells in microscopic blood smear images. Achieving a remarkable accuracy of 97% using MobileNetV2, our...
Sumber Asli
Google Scholar
DOI