Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–3 dari 3 artikel
Integrating Fully Homomorphic Encryption and Zero-Knowledge Proofs for Efficient Verifiable Computation
Journal of Computing Theories and Applications
Vol 3
, No 3
(2025)
Fully Homomorphic Encryption (FHE) enables computation on encrypted data with end-to-end confidentiality; however, its practical adoption remains limited by substantial computational costs, including long encryption and decryption times, high memory consumption, and operational latency. Zero-Knowledge Proofs (ZKPs) complement FHE by enabling correctness verification without revealing sensitive information, although they do not support encrypted computation independently. This study integrates bo...
Sumber Asli
Google Scholar
DOI
Integrating Quantum, Deep, and Classic Features with Attention-Guided AdaBoost for Medical Risk Prediction
Kusuma, Muh Galuh Surya Putra
; Setiadi, De Rosal Ignatius Moses
; Herowati, Wise
; Sutojo, T.
; Adi, Prajanto Wahyu
; Dutta, Pushan Kumar
; Nguyen, Minh T.
Journal of Computing Theories and Applications
Vol 3
, No 2
(2025)
Chronic diseases such as chronic kidney disease (CKD), diabetes, and heart disease remain major causes of mortality worldwide, highlighting the need for accurate and interpretable diagnostic models. However, conventional machine learning methods often face challenges of limited generalization, feature redundancy, and class imbalance in medical datasets. This study proposes an integrated classification framework that unifies three complementary feature paradigms: classical tabular attributes, dee...
Sumber Asli
Google Scholar
DOI
SentiGEN: Synthetic Data Generator for Sentiment Analysis
Journal of Computing Theories and Applications
Vol 1
, No 4
(2024)
Obtaining high-quality, diverse, accurate datasets for sentiment analysis has always been a significant challenge. Traditional approaches include annotators, which may introduce bias to datasets and are also time-consuming and expensive. These types of datasets may also not represent the variety needed to train robust and generalizable sentiment analysis models. This study introduces a novel combination of techniques to approach the problem with a novel solution. The proposed system, SentiGEN in...
Sumber Asli
Google Scholar
DOI