Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–1 dari 1 artikel
An Attention-Enhanced CNN–RBF Framework for Network Intrusion Detection in Imbalanced Traffic
Kabura, Fabrice
; Nsabimana, Thierry
Journal of Computing Theories and Applications
Vol 3
, No 3
(2026)
The increasing complexity and scale of modern network traffic driven by IoT and cloud-based infrastructures have made accurate intrusion detection a critical challenge. Conventional network intrusion detection systems (NIDS) and many deep learning–based approaches struggle to reliably detect minority and stealthy attacks due to severe class imbalance and limited discrimination of subtle traffic patterns. To address these limitations, this study proposes a hybrid CNN–RBF–Attention framework for n...
Sumber Asli
Google Scholar
DOI