Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–2 dari 2 artikel
Development of a Model to Classify Skin Diseases using Stacking Ensemble Machine Learning Techniques
Jaiyeoba, Oluwayemisi
; Ogbuju, Emeka
; Yomi, Owolabi Temitope
; Oladipo, Francisca
Journal of Computing Theories and Applications
Vol 2
, No 1
(2024)
Skin diseases are highly prevalent and transmissible. It has been one of the major health problems that most people face. The diseases are dangerous to the skin and tend to spread over time. A patient can be cured of these skin diseases if they are detected on time and treated early. However, it is difficult to identify these diseases and provide the right medications. This study's research objectives involve developing an ensemble machine learning based model for classifying Erythemato-Squamous...
Sumber Asli
Google Scholar
DOI
Evaluation of University Websites in Nigeria using the Web Content Accessibility Guidelines
Ogbuju, Emeka
; Ihinkalu, Olalekan
; Ajulo, Emmanuel
; Jaiyeoba, Oluwayemisi
; Yemi-Peters, Victoria
Journal of Computing Theories and Applications
Vol 1
, No 2
(2023)
Providing accessible open educational resources (OER) is essential for users with impairments to access university resources. To achieve this, web content accessibility guidelines (WCAG) have been developed. In this study, we used the AChecker web accessibility evaluation tool to assess the content of 42 federal university websites in Nigeria and recorded their conformance level to the WCAG. The findings show that at Level A (Minimal Compliance), there were 855 known problems, 55 likely problems...
Sumber Asli
Google Scholar
DOI
1 Sitasi