Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–3 dari 3 artikel
Enhanced Vision Transformer and Transfer Learning Approach to Improve Rice Disease Recognition
Rachman, Rahadian Kristiyanto
; Setiadi, De Rosal Ignatius Moses
; Susanto, Ajib
; Nugroho, Kristiawan
; Islam, Hussain Md Mehedul
Journal of Computing Theories and Applications
Vol 1
, No 4
(2024)
In the evolving landscape of agricultural technology, recognizing rice diseases through computational models is a critical challenge, predominantly addressed through Convolutional Neural Networks (CNN). However, the localized feature extraction of CNNs often falls short in complex scenarios, necessitating a shift towards models capable of global contextual understanding. Enter the Vision Transformer (ViT), a paradigm-shifting deep learning model that leverages a self-attention mechanism to trans...
Sumber Asli
Google Scholar
DOI
Exploring DQN-Based Reinforcement Learning in Autonomous Highway Navigation Performance Under High-Traffic Conditions
Journal of Computing Theories and Applications
Vol 1
, No 3
(2024)
Driving in a straight line is one of the fundamental tasks for autonomous vehicles, but it can become complex and challenging, especially when dealing with high-speed highways and dense traffic conditions. This research aims to explore the Deep-Q Networking (DQN) model, which is one of the reinforcement learning (RL) methods, in a highway environment. DQN was chosen due to its proficiency in handling complex data through integrated neural network approximations, making it capable of addressing h...
Sumber Asli
Google Scholar
DOI
Butterflies Recognition using Enhanced Transfer Learning and Data Augmentation
Adityawan, Harish Trio
; Farroq, Omar
; Santosa, Stefanus
; Islam, Hussain Md Mehedul
; Sarker, Md Kamruzzaman
; Setiadi, De Rosal Ignatius Moses
Journal of Computing Theories and Applications
Vol 1
, No 2
(2023)
Butterflies’ recognition serves a crucial role as an environmental indicator and a key factor in plant pollination. The automation of this recognition process, facilitated by Convolutional Neural Networks (CNNs), can expedite this task. Several pre-trained CNN models, such as VGG, ResNet, and Inception, have been widely used for this purpose. However, the scope of previous research has been somewhat constrained, focusing only on a maximum of 15 classes. This study proposes to modify the CNN Ince...
Sumber Asli
Google Scholar
DOI
14 Sitasi