Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–2 dari 2 artikel
Evaluating Open-Source Machine Learning Project Quality Using SMOTE-Enhanced and Explainable ML/DL Models
Hamza, Ali
; Hussain, Wahid
; Iftikhar, Hassan
; Ahmad, Aziz
; Shamim, Alamgir Md
Journal of Computing Theories and Applications
Vol 3
, No 2
(2025)
The rapid growth of open-source software (OSS) in machine learning (ML) has intensified the need for reliable, automated methods to assess project quality, particularly as OSS increasingly underpins critical applications in science, industry, and public infrastructure. This study evaluates the effectiveness of a diverse set of machine learning and deep learning (ML/DL) algorithms for classifying GitHub OSS ML projects as engineered or non-engineered using a SMOTE-enhanced and explainable modelin...
Sumber Asli
Google Scholar
DOI
Dynamic and Static Handwriting Assessment in Parkinson's Disease: A Synergistic Approach with C-Bi-GRU and VGG19
Ali, Sohaib
; Hashmi, Adeel
; Hamza, Ali
; Hayat, Umar
; Younis, Hamza
Journal of Computing Theories and Applications
Vol 1
, No 2
(2023)
Parkinson's disease (PD) is a neurodegenerative disorder causing a decline in dopamine levels, impacting the peripheral nervous system and motor functions. Current detection methods often identify PD at advanced stages. This study addresses early-stage detection using handwriting analysis, specifically exploring the PaHaW dataset for pen pressure and stroke movement data. Evaluating online and offline features, the research employs pre-trained CNN models (VGG 19 and AlexNet) for offline datasets...
Sumber Asli
Google Scholar
DOI
14 Sitasi