Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–1 dari 1 artikel
Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost
Ako, Rita Erhovwo
; Aghware, Fidelis Obukohwo
; Okpor, Margaret Dumebi
; Akazue, Maureen Ifeanyi
; Yoro, Rume Elizabeth
; Ojugo, Arnold Adimabua
; Setiadi, De Rosal Ignatius Moses
; Odiakaose, Chris Chukwufunaya
; Abere, Reuben Akporube
; Emordi, Frances Uche
; Geteloma, Victor Ochuko
; Ejeh, Patrick Ogholuwarami
Journal of Computing Theories and Applications
Vol 2
, No 1
(2024)
Customer attrition has become the focus of many businesses today – since the online market space has continued to proffer customers, various choices and alternatives to goods, services, and products for their monies. Businesses must seek to improve value, meet customers' teething demands/needs, enhance their strategies toward customer retention, and better monetize. The study compares the effects of data resampling schemes on predicting customer churn for both Random Forest (RF) and XGBoost ense...
Sumber Asli
Google Scholar
DOI