Klaim Artikel Anda
Verifikasi kepemilikan artikel akademik
Apakah artikel-artikel ini milik Anda?
Daftarkan diri Anda sebagai author untuk mengklaim artikel dan dapatkan profil akademik terverifikasi dengan fitur lengkap.
Badge Verifikasi
Profil terverifikasi resmi
Statistik Lengkap
H-index, sitasi, dan metrik
Visibilitas Tinggi
Tampil di direktori author
Kelola Publikasi
Dashboard artikel terpadu
Langkah-langkah Klaim Artikel:
- 1. Daftar akun author dengan email akademik Anda
- 2. Verifikasi email dan lengkapi profil
- 3. Login dan buka menu "Klaim Artikel"
- 4. Cari dan klaim artikel Anda
- 5. Tunggu verifikasi dari admin (1-3 hari kerja)
Menampilkan 1–2 dari 2 artikel
RETRACTED: The Use of AI to Analyze Social Media Attacks for Predictive Analytics
Adekunle, Temitope Samson
; Alabi, Oluwaseyi Omotayo
; Lawrence, Morolake Oladayo
; Ebong, Godwin Nse
; Ajiboye, Grace Oluwamayowa
; Bamisaye, Temitope Abiodun
Journal of Computing Theories and Applications
Vol 1
, No 4
(2024)
This article has been retracted at the request of the Editor-in-Chief.
The journal was alerted to issues within this article, including significant overlap in content, methodology, and visual materials with another previously published article: "Social Engineering Attack Classifications on Social Media Using Deep Learning" (DOI: 10.32604/cmc.2023.032373) published in Computers, Materials & Continua in 2023.
Upon thorough investigation, it was found that the article substantially reproduces i...
Sumber Asli
Google Scholar
DOI
A Review of Generative Models for 3D Vehicle Wheel Generation and Synthesis
Akande, Timileyin Opeyemi
; Alabi, Oluwaseyi Omotayo
; Oyinloye, Julianah B.
Journal of Computing Theories and Applications
Vol 1
, No 4
(2024)
Integrating deep learning methodologies is pivotal in shaping the continuous evolution of computer-aided design (CAD) and computer-aided engineering (CAE) systems. This review explores the integration of deep learning in CAD and CAE, particularly focusing on generative models for simulating 3D vehicle wheels. It highlights the challenges of traditional CAD/CAE, such as manual design and simulation limitations, and proposes deep learning, especially generative models, as a solution. The study aim...
Sumber Asli
Google Scholar
DOI