๐Ÿ“… 27 December 2025
DOI: 10.51903/elkom.v18i2.3332

Analisa Citra Warna Darah Reject Berdasarkan Fitur Histogram Menggunakan KNN

Jurnal Elektronika dan Komputer
Universitas Sains dan Teknologi Komputer

๐Ÿ“„ Abstract

Manual quality assessment of Platelet Concentrate (TC) is highly subjective and inconsistent, necessitating an objective, automated classification system. This study aims to develop a computationally efficient, low-cost model for TC quality classification using Histogram Features extracted from grayscale images combined with the K-Nearest Neighbor (KNN) algorithm. The methodology employed critical preprocessing steps, including StandardScaler for normalization and SMOTE for balancing the training data, followed by optimization across K=1 to K=30. The optimal model achieved a maximum accuracy of 69.23% at K=6, with an F1-Score of 71.43%, confirming robust performance on the imbalanced testing set. The results validate the effectiveness of the Histogram-KNN approach as a consistent and reliable decision support system for rapid TC quality screening in resource-limited settings.

๐Ÿ”– Keywords

#Platelete Concentrate (TC); K-Nearest Neighbor (KNN); Histogram Features; SMOTE; Quality Classification; Platelete Concentrate (TC); K-Nearest Neighbor (KNN); Histogram Features; SMOTE; Quality Classification

โ„น๏ธ Informasi Publikasi

Tanggal Publikasi
27 December 2025
Volume / Nomor / Tahun
Volume 18, Nomor 2, Tahun 2025

๐Ÿ“ HOW TO CITE

Achhmad Agam; Achhmad Agam; Supatman, "Analisa Citra Warna Darah Reject Berdasarkan Fitur Histogram Menggunakan KNN," Jurnal Elektronika dan Komputer, vol. 18, no. 2, Dec. 2025.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

๐Ÿ”— Artikel Terkait dari Jurnal yang Sama

๐Ÿ“Š Statistik Sitasi Jurnal