๐Ÿ“… 22 December 2024
DOI: 10.51903/elkom.v17i2.2197

Prediksi Stok Tanaman Hidroponik dengan Artificial Intelligence: Ensemble Learning dengan Optimasi Evolusioner

Jurnal Elektronika dan Komputer
Universitas Sains dan Teknologi Komputer

๐Ÿ“„ Abstract

Hydroponic plant cultivation is booming, but stock and sales are hard to predict. Poor prediction can cause farmers to overstock and lose money. This study suggests a framework that uses several machine learning models, including Linear Regression (LR), Random Forest (RF), Decision Tree (DT), and Extreme Gradient Boosting. "Ensemble Learning," which combines these models, should yield more accurate and generalizable results than a single model. This framework is assessed using historical hydroponic plant sales data and related factors like price, weather, and market trends. The model's performance is measured by the difference between predictions and actual values using RMSE and MAE metrics. This framework should improve hydroponic plant stock and sales predictions. Farmers can make better production, inventory, and harvest distribution decisions. Besides reducing financial losses, this reduces food waste and improves food security.

๐Ÿ”– Keywords

#Ensamble Learning; Stock Prediction; Artificial Intelligence

โ„น๏ธ Informasi Publikasi

Tanggal Publikasi
22 December 2024
Volume / Nomor / Tahun
Volume 17, Nomor 2, Tahun 2024

๐Ÿ“ HOW TO CITE

Putu Bagus Adidyana Anugrah Putra; Septian Geges; Oktaviani Enjela Putri; I Made Bayu Artha Pratama, "Prediksi Stok Tanaman Hidroponik dengan Artificial Intelligence: Ensemble Learning dengan Optimasi Evolusioner," Jurnal Elektronika dan Komputer, vol. 17, no. 2, Dec. 2024.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

๐Ÿ”— Artikel Terkait dari Jurnal yang Sama

๐Ÿ“Š Statistik Sitasi Jurnal