๐Ÿ“… 14 July 2023
DOI: 10.51903/elkom.v16i1.999

INDONESIA Pola Asosiasi Untuk Rekomendasi Penataan Display Barang Menggunakan Algoritma Apriori dan FP-Growth (Study Kasus Gamefantasia Ada Swalayan Pati)

Jurnal Elektronika dan Komputer
Universitas Sains dan Teknologi Komputer

๐Ÿ“„ Abstract

This data mining association processes 1224 Gamefantasia ticket redemption transaction data. The goal is to find a pattern of association between goods as a recommendation for structuring the display of goods at the cashier counter and increasing ticket exchange transactions. Modeling uses a comparison of two algorithms, namely the Apriori algorithm and FP-Growth. The data analysis method with the CRISMP-DM method is then processed by RStudio software. The results of the study with the same parameters support 0.02 and confidence 0.1 FP-Growth algorithm formed 53 rules, the strength of the association rule 6.2%, the accuracy was1245%. Whereas the Apriori algorithm forms only 12 rules, the strength of the association rules is 2.1% and the accuracy is 7.8%. Thus, it can be concluded that the use of the FP-Growth algorithm has better results than the Apriori algorithm because it has the highest accuracy in finding transaction patterns.

๐Ÿ”– Keywords

#Apriori Algorithm #FP-Growth Algoritm #CRISP-DM Method

โ„น๏ธ Informasi Publikasi

Tanggal Publikasi
14 July 2023
Volume / Nomor / Tahun
Volume 16, Nomor 1, Tahun 2023

๐Ÿ“ HOW TO CITE

MURDIANTO, BEKRI; MURDIANTO, BEKRI; Arief Jananto, "INDONESIA Pola Asosiasi Untuk Rekomendasi Penataan Display Barang Menggunakan Algoritma Apriori dan FP-Growth (Study Kasus Gamefantasia Ada Swalayan Pati)," Jurnal Elektronika dan Komputer, vol. 16, no. 1, Jul. 2023.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

๐Ÿ”— Artikel Terkait dari Jurnal yang Sama

๐Ÿ“Š Statistik Sitasi Jurnal