📅 27 January 2026
DOI: 10.62411/jcta.15675

A Lightweight Maize Leaf Disease Recognition Using PCA-Compressed MobileNetV2 Features and RBF-SVM

Journal of Computing Theories and Applications
Universitas Dian Nuswantoro

📄 Abstract

The integration of Artificial Intelligence (AI) into precision agriculture has significantly improved plant disease recognition; however, many existing deep learning models remain computationally expensive and feature-redundant, limiting their deployment on low-power and edge devices. To address these limitations, this study proposes a lightweight framework for maize leaf disease recognition based on serial deep feature extraction, dimensionality reduction, and machine-learning–based classification. A pre-trained MobileNetV2 network is employed as a fixed feature extractor to obtain discriminative visual representations, while Principal Component Analysis (PCA) is applied to reduce feature dimensionality by approximately 76%, retaining 95% of the original variance and improving computational efficiency. The compressed features are subsequently classified using a Radial Basis Function Support Vector Machine (RBF-SVM), optimized via grid search and cross-validation. Experiments conducted on a four-class maize leaf disease dataset (Northern Leaf Blight, Common Rust, Gray Leaf Spot, and Healthy), with class imbalance handled during training, demonstrate that the proposed MobileNetV2–PCA–SVM pipeline achieves 97.58% accuracy, 96.60% precision, 96.59% recall, and 96.59% F1-score, outperforming the DenseNet201 + Bayesian-optimized SVM baseline (94.60%, 94.40%, 94.40%, and 94.40%, respectively). This improvement corresponds to a 2.98% accuracy gain, a 55% reduction in error rate, an 86% reduction in model parameters (20.31M to 2.75M), and an 85% reduction in model size (81 MB to 12 MB). These results indicate that the proposed framework provides a compact and efficient solution with strong potential for deployment in resource-constrained agricultural environments.

🔖 Keywords

#Deep feature extraction; Fog/Edge Computing; Lightweight model; Maize leaf disease recognition; MobileNetV2; Plant disease classification; Precision agriculture; Smart agriculture

ℹ️ Informasi Publikasi

Tanggal Publikasi
27 January 2026
Volume / Nomor / Tahun
Volume 3, Nomor 3, Tahun 2026

📝 HOW TO CITE

Abubakar, Mustapha; Ibrahim, Yusuf; Ajayi, Ore-Ofe; Saminu, Sani Saleh, "A Lightweight Maize Leaf Disease Recognition Using PCA-Compressed MobileNetV2 Features and RBF-SVM," Journal of Computing Theories and Applications, vol. 3, no. 3, Jan. 2026.

ACM
ACS
APA
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver

🔗 Artikel Terkait dari Jurnal yang Sama

📊 Statistik Sitasi Jurnal